
Towards High-Fidelity Digital Twins of Offshore Wind Turbines Utilizing State-of-the-Art Heterogeneous Supercomputers

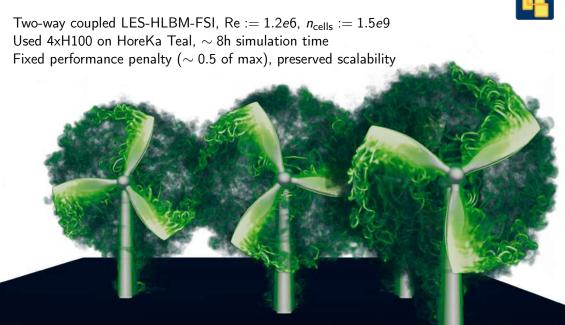
Adrian Kummerländer, Shota Ito, Fedor Bukreev, and Mathias J. Krause

University of Liverpool | EU Horizon Project SeaDream | October 3, 2025

Motivation

Ensemble simulations of hemodynamics in moving vessels

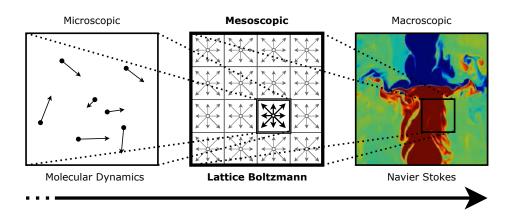
Foreseeing the next generation of Aircraft


▶ Efficient FSI needed

Open Source High Performance LBM for Heterogeneous Clusters

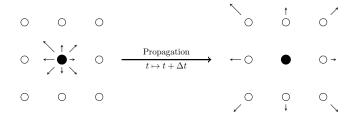
Motivation: Wind Park

Outline



- ► Methodology
- ► Validation
- ► Performance

Lattice Boltzmann Methods



Lattice Boltzmann Methods

Discretization on Regular Lattice using discrete velocity stencil Separation into Collide & Stream steps

Collision is perfectly parallel computation

Streaming exchanges data in local neighborhood

Boundary Conditions / Coupling operates on data in local neighborhood

▶ "All non-linearities local, all non-localities linear"

Method: HHRRLBM-WMLES-FSI

... homogenized hybrid regularized recursive lattice Boltzmann method for wall-modeled large eddy simulations of fluid-structure interaction problems.

HHRRLBM Moving boundary model, collision step

WM Approximation of unresolved boundary layer

LES Approximation of unresolved turbulent eddies

FSI Boundaries are actually moving and structure response is modeled

Target Equation: FBNSE

macroscopic view Incompressible flows in time-dependent geometries considered as filtered Brinkman–Navier–Stokes equations discretized as homogenized LBM

The filtered Brinkman-Navier-Stokes equations

$$\begin{cases} \boldsymbol{\nabla} \cdot \bar{\boldsymbol{u}} = 0, & \text{in } \Omega \times I, \\ \frac{\partial \bar{\boldsymbol{u}}}{\partial t} + \bar{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \bar{\boldsymbol{u}} = -\frac{\boldsymbol{\nabla} \bar{\rho}}{\rho} + \nu_{\text{mo}} \boldsymbol{\nabla}^2 \bar{\boldsymbol{u}} + \frac{\nu_{\text{mo}}}{K} \bar{\boldsymbol{u}} - \boldsymbol{\nabla} \cdot \mathsf{T}_{\text{sgs}}, & \text{in } \Omega \times I, \end{cases}$$
(1)

for filtered pressure \bar{p} , velocity $\bar{\boldsymbol{u}}$ density ρ on spatial domain $\Omega \subseteq \mathbb{R}^3$ and time $I \subseteq \mathbb{R}_{>0}$. HHRRLBM *can be considered* 2nd order approximation of FBNSE.

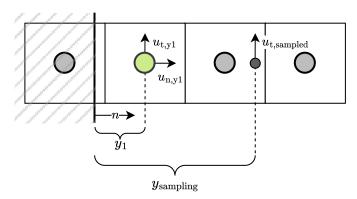
Collision step: HHRRLBM

The filtered and homogenized LB equation

$$f_i(\mathbf{x} + \xi_i \triangle t, t + \triangle t) = f_i^{\text{eq}}(\mathbf{x}, t) + \left(1 - \frac{1}{\tau_{\text{eff}}(\mathbf{x}, t)}\right) \tilde{f}_i^{(1)}(\mathbf{x}, t), \quad \text{in } \Omega_{\triangle x} \times I_{\triangle t}, \quad (2)$$

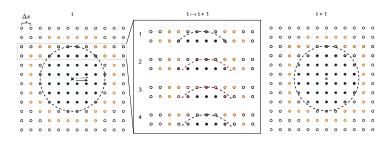
for distributions f_i along q discrete velocities ξ_i on a regular lattice $\Omega_{\triangle x} \subset \Omega \subseteq \mathbb{R}^3$ with cell size $\triangle x$ at discrete times $I_{\triangle t} \subset I \subseteq \mathbb{R}_{\geq 0}$, step size $\triangle t$. Using:

$$\tilde{f}_{i}^{(1)}(\mathbf{x},t) = \sigma f_{i}^{(1)}(\mathbf{x},t) - (1-\sigma)f_{i}^{(1,FD)} \text{ for } \sigma \in [0,1],$$
(3)


$$\widehat{\boldsymbol{u}}(\boldsymbol{x},t) = (1 - d(\boldsymbol{x},t))\boldsymbol{u}(\boldsymbol{x},t) + d(\boldsymbol{x},t)\boldsymbol{u}^{\mathrm{B}}(\boldsymbol{x},t), \tag{4}$$

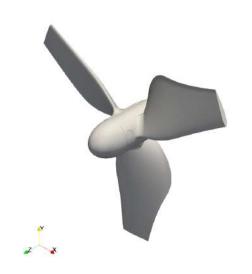
$$d(\mathbf{x},t) = 1 - \frac{\triangle x^2 \nu \tau_{\text{mo}}}{K(\mathbf{x},t)}.$$
 (5)

WMLES


- ► Set non-zero friction velocity from empirical Spalding wall function
- ► Finite difference approximation of shear stresses

$$0 = \frac{u}{u_{\tau_w}} + \frac{1}{E} \left(\exp\left(\kappa \frac{u}{u_{\tau_w}}\right) - 1 - \kappa \frac{u}{u_{\tau_w}} - \frac{1}{2} \left(\kappa \frac{u}{u_{\tau_w}}\right)^2 - \frac{1}{6} \left(\kappa \frac{u}{u_{\tau_w}}\right)^3 \right) - y \frac{u_{\tau_w}}{\nu}$$

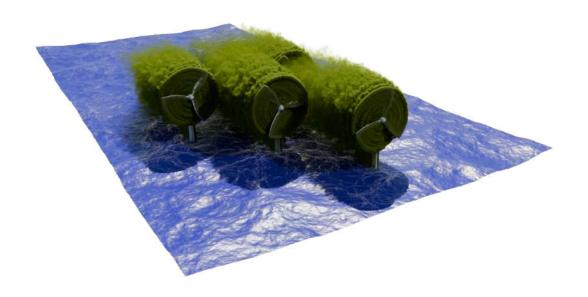
is solved for the friction velocity u_{τ_w} using Newton iteration.


Let $\phi(x,t)$ be the signed distance to the solid surface, $\epsilon_h = \epsilon \Delta x$ the width of the transition region coupled to Δx and $s : \mathbb{R} \to [0,1]$ a transition function. Then

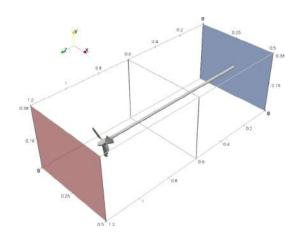
$$d(\mathsf{x},t) := \begin{cases} 0 & \text{if } \phi(\mathsf{x},t) \le -\frac{\epsilon_h}{2} \\ s(\phi(\mathsf{x},t)) & \text{if } \phi(\mathsf{x},t) \in (-\frac{\epsilon_h}{2},\frac{\epsilon_h}{2}) \\ 1 & \text{if } \phi(\mathsf{x},t) \ge \frac{\epsilon_h}{2} \end{cases}$$
(6)

is the lattice porosity.

Example: Representations of rotor geometry for wall-modeling



Cleaned rotor geometry as STL

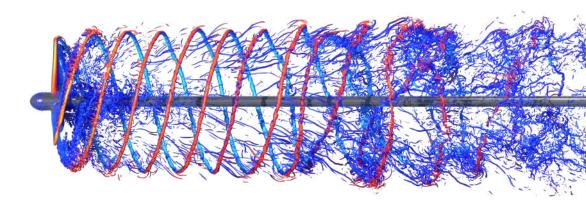

Level set of $d(x) = \frac{1}{2}$ and y_1 normals

Validation

Reference Setup: Experimental, Actuator line, Blade-resolved

 $r := 0.09 \,\mathrm{m}$

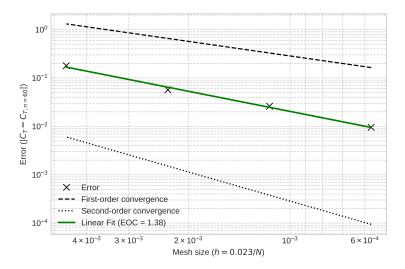
 $f := 3 \, \text{Hz}$


 $u_{\infty} := 0.56 \,\mathrm{m\,s^{-1}}$

 $Re\approx40\,000$

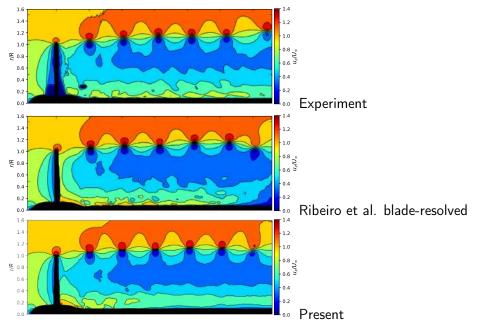
André Ribeiro et al. *Blade-resolved and actuator line simulations of rotor wakes*. In: Computers & Fluids. DOI: 10.1016/j.compfluid.2024.106477. 2025.

First Impression

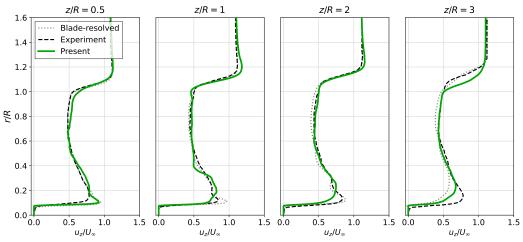


Rendering of Q-criterion at $Q=1 \times 10^4$ for N=60, colored by axial velocity

Experimental Order of Convergence: Thrust Coefficient



Ν	#Cells [1e6]	C_T
60	4053	0.96299
40	1200	0.97256
20	150	0.93696
10	18	0.90608
5	2	1.14215


Comparison of phase-averaged axial velocity on a z-r plane

Phase-averaged axial velocities

Time and azimuthal-averaged axial velocity at different radial lines

Performance

Characteristics of (HH)RRLBM-LES

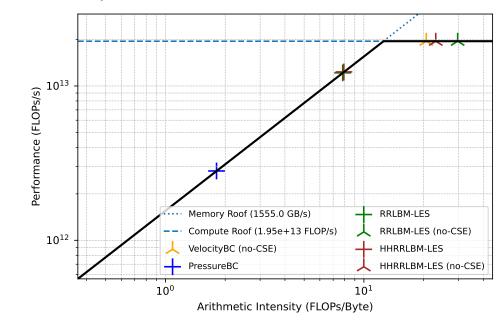
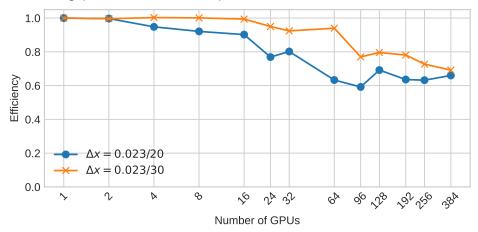

Dynamics	BW [bytes]	Operations [FLOPs]			Performance [MLUPs]		
		No-CSE	CSE	Reduction	No-CSE	CSE	Speedup
RRLBM	152	4512	1189	2.90	2885	6411	2.22
HHRRLBM	204	4697	1618	3.79	2373	4252	1.79

Table: Arithmetic- / bandwidth intensity and isolated speedup on A100 GPU

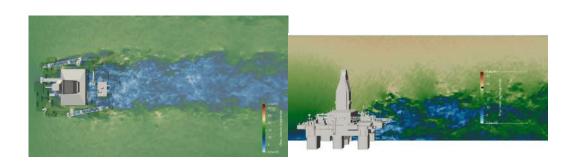
► CSE transparently yields good performance improvements

Roofline Analysis of HHRRLBM-LES



Analysis of Weak Scaling

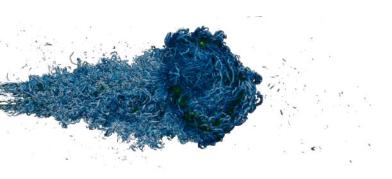
One turbine per GPU, 30×10^6 resp. 110×10^6 cells each Max. problem size 12×10^9 resp. 41×10^9 cells Peak throughput $\approx 562 \times 10^9$ cells per second


384 NVIDIA A100 GPUs on the Karolina supercomputer at IT4I, Czech Republic

SeaDream Networking in Liverpool

Connected with Dr. Neale Watson (Mechanical and Aerospace Engineering)

▶ Started collaboration on CFD for offshore structures


Summary

OpenLB offers all ingredients for high-fidelity digital twins of wind farms

- ▶ ... has previously been validated for urban flows
- ► ... now validated for single rotors
- ▶ ... and scalable to farms of hundreds of them

kummerlaender@kit.edu

Check out openIb.net for further information and see you at the Spring School :)

9th Spring School Lattice Boltzmann Methods with OpenLB Software Lab

Liverpool, England, UK, 23. - 27. March 2026

- For scientists and industrial users
 - Option Beginners; comprehensive theoretical lectures on LBM, mentored training on case studies using OpenLB
 - Option Advanced: bring your own problem
- Knowledge exchange & networking at poster session, lunches, dinner, coffee breaks, excursion
- More Info: www.openlb.net/spring-school

Executive committee:

John Bridgeman, Davide Dapelo, Mohaddeseh Musavi Nezhad. Mathias J. Krause, Shota Ito, Stephan Simonis

Invited speakers:

Timm Krüger, Halim Kusumaatmaia. Timothy Reis, Pierre Boivin, Julien Favier